RESEARCH ARTICLE

OPEN ACCESS

Some Results on Fuzzy Supra Topological Spaces

Manjari Srivastava

Department of Mathematics VSSD College, Kanpur (UP) India

ABSTRACT

In this paper we have obtained some results on fuzzy supra topological spaces introduced in [9]. *Keywords*- fuzzy supra topological spaces, graph, continuity

I. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh[10] in 1965 to describe those phenomena which are imprecise or fuzzy in nature. Fuzzy set is a generalization of ordinary set but there is a very significant difference between the two. Due to these differences several set theoretic results are not true in fuzzy setting.

In 1968, Chang[2] introduced fuzzy topology as a natural generalization of ordinary topology. Later on in 1976, R Lowen[] redefined fuzzy topology on a set X in a different way. According to him, a collection τ of fuzzy in X is a fuzzy topology on X if it is closed under arbitrary union, finite intersection and contains all constant fuzzy sets.

In [6], Mashhour et al. introduced the concepts of supra topological spaces, supra open sets and supra closed sets. Later on ME Abd El-Monsef et al [1] introduced the concept of fuzzy supra topological as a natural generalization of the notion of supra topological spaces. Here in this paper we follow the definition given Srivastava and Sinha[9]. They called a family $\tau \subseteq I^x$ a fuzzy supra topology on X if it is closed under arbitrary union and contains all constant fuzzy sets in X.

II. PRELIMINARIES

Here we shall follow Lowen's definition of fuzzy topology[5]. I denotes the unit interval [0,1], a constant fuzzy set taking value $\alpha \epsilon$ [0,1] will be denoted by α . A^c will denote the complement of a fuzzy set A in X. α_A

will denote the fuzzy set in X which takes the constant value α on A and zero otherwise. As in [5], a fuzzy point x_r in X is a fuzzy set in X taking value re(0,1) at x and zero elsewhere. x and r are called support and value of the fuzzy point x_r respectively. x_r is said to belong to a fuzzy set A in X iff r < A(x).

The following definitions are from [7].A fuzzy singleton x_r in X is a fuzzy set in X taking value rc(0,1] at x and zero elsewhere. A fuzzy singleton x_r is said to be quasi coincident with a fuzzy set A (notation: x_rqA) iff r+A(x)>1

Fuzzy supra topology on X is defined earlier by S.Dang et al.[3] and A. Kandil et al.[4] as a subfamily $\tau \sqsubseteq I^x$ which is closed under arbitrary union and contains X, Φ .In[9] Srivastava & Sinha modify this definition as:

Definition 2.1[9] : A subfamily $\tau \sqsubseteq I^X$ is called a fuzzy supra topology on X if it contains all constant fuzzy sets and is closed under arbitrary union.

If τ is a fuzzy supra topology on X,then (X,τ) is called a fuzzy supra topological space, in short, an fsts.

Members of τ are called fuzzy supra open sets (in short, fuzzy S-open sets) and their complements are called fuzzy S-closed sets (in short, fuzzy S-closed sets) in X.

Definition2.2[3]: A fuzzy set A in an fsts is called a fuzzy supra neighbourhood of a fuzzy singleton x_r if Bet such that $x_r \sqsubseteq B \sqsubseteq A$

Definition 2.3[3]: Let (X,τ) be an fsts. A subfamily of **B** of τ called a base for τ if each U $\epsilon\tau$ can be expressed as union of members of **B**.

Definition2.4[**3]:**A mapping $f:(X,\tau_1) \rightarrow (Y,\tau_2)$ between two fsts is called fuzzy supra continuous (fuzzy S-continuous, in short) if f⁻¹(y) $\in \tau_1$ for every $v \in \tau_2$.

Proposition2.1:A fuzzy set in an fsts (X,τ) is fuzzy S-open iff it is a fuzzy supra neighbourhood of each of its fuzzy points.

Proposition2.2: A fuzzy point $x_r \in UA_i$ iff $x_r \in A_i$ for some i.

Proposition 2.3[9]: A fuzzy set U in an fsts (X,τ) is fuzzy S-open set B such that $x_r \in B \equiv U$.

Definition2.5[1]:Let (X,τ_1) and (Y,τ_2) be two fsts. Then the product fsts of (X,τ_1) and (Y,τ_2) is defined as the fsts $(XxY,\tau_1x\tau_2)$ where $\tau_1x\tau_2$ is the fuzzy supra topology on XxY having $\{U_1xU_2 : U_i, i=1,2\}$ as a base.

We extend the definition of product fsts in case of an arbitrary family of fuzzy supra topological spaces as follows :

Let { $(X_i, \tau_i):i \in \mathcal{A}$ } be an arbitrary family of fsts .Then the product fsts $(\Pi X_i, \Pi \tau_i)$ is the one having $\{\Pi U_i: U_i = X_i \text{ except for finitely many } i \in \mathcal{A}\}$ as a base.

www.ijera.com

III. FUZZY SUPRA TOPOLOGY AND RELATED CONCEPTS:

Definition3.1:Let (X,τ_1) and (X,τ_2) be two fsts. Then a function $f: (X,\tau_1) \rightarrow (X,\tau_2)$ is said to have a fuzzy S-closed graph if the graph $\mathcal{G}(f) = \{(x, f(x)): x \in X\}$ is fuzzy S – closed in XxY.

Proposition3.1: A subset A of the product fsts $(XxY,\tau_1x\tau_2)$ is fuzzy S-closed iff for each fuzzy point $(x,y)_r cXxY$ -A there exist two fuzzy supra open neighbourhood U and V of x_r and y_r respectively such that $(UxV)\cap A=\Phi$

Proof:Let A be fuzzy S-closed in XxY. Then XxY-A is fuzzy S-open.Hence for any fuzzy point $(x,y)_r$ in XxY-A,in view of Proposition 2.3, $\exists a \ basic \ fuzzy$ S-open set say UxV in XxY such that $(x,y)_r \in UxV \sqsubseteq XxY$ -A implying that $x_r \in U$, $y_r \in V$ and $(UxV) \cap A = \varphi$.

Conversely,let for each fuzzy point $(x,y)_r \in XxY$ -A, \exists fuzzy S – open neighbourhood U of x_r and V of y_rsuch that $UxV \cap A=\varphi$. This implies that for every fuzzy point $(x,y)_r \in XxY$ -A, there exists a basic fuzzy S –open set UxV such that $(x,y)_r \in UxV \equiv XxY$ -A and hence XxY-A is fuzzy Sopen i.e.A is fuzzy S-closed.

Definition3.2[3]:Let (X,τ) be an fsts and $\alpha \in [0,1)$. A collection $\mathcal{U} \sqsubseteq Ix$ is said to be an α -shading of X if for each $x \in X, \exists a$ Geu such that $G(x) > \alpha$. A subcollection of u is called a fuzzy α -subshading if it itself forms a fuzzy α -shading of X.

An α -shading \mathcal{U} of X is called a fuzzy supra open α -shading of X if each member of u is fuzzy supra open.

Definition3.3[3]: An fsts (X,τ) is said to be α -supracompact if every fuzzy supra open α -shading of X has a finite α -subshading.

Definition3.4[3]:Let(X, τ) be an fsts and Y \sqsubseteq X. Then $\tau_Y = \{Y \cap A: A \in \tau\}$ is called the fuzzy supra subspace topology on Y and (Y, τ_Y) is called a fuzzy supra subspace of (X, τ) .

Definition3.5[9]: An fsts (X,τ) is called Haudorff if for each pair of distinct fuzzy points x_r and y_s in X there exists U,V $\varepsilon\tau$ such that $x_r\varepsilon U$, $y_s\varepsilon V$ and U \cap V= ϕ .

Lemma3.1:Let (X,τ) and (Y,τ^*) be two fuzzy supra topological spaces.Then a function $f : (X,\tau) \rightarrow$ (Y,τ^*) has an fuzzy S-closed graph iff for each pair of fuzzy points $x_r \in X$, $y_r \in Y$ such that $y \neq f(x)$ there exist two fuzzy supra open sets U and V containing x_r and y_r respectively such that $f(U) \cap V = \varphi$.

Proof:First let us suppose that f has an S-closed graph i. e.G(f)={ $(x,f(x)):x \in X$ } is S-closed in XxY.Then for each $x_r \in X$ and $y_r \in Y$ such that $y \neq f(x) \exists$ two fuzzy supra open sets U and V containing x_r and y_r respectively such that $(UxV) \cap G(f) = \varphi$.

So UxV(x,f(x))=0 $\forall x \in X$ Or inf { U(x),V(f(x))}=0 $\forall x \in X$ We now show that $f(U) \cap V = \varphi$ i.e. for $y \in Y$ ($f(U) \cap V$)(y) =inf { f(U)(y), V(y)} =inf { $\sup_{x \in f^{-1}(y)} U(x), V(y)$ }

=0

.....(2)

This can be seen in the following lines :

(a) If y=f(x) for some x, then from (1),

Inf $\{U(x), V(f(x))\} = 0$

Which implies that either U(x) or V(f(x))=0. Now if V(f(x))=0 then obviously inf $\{\sup_{x \in f} (y)U(x), V(f(x))\}=0$ and \exists if for any $x \in X$, $V(f(x)) \neq 0$ and from (1), U(x)=0

This is true for any $x \in f^{1}{y}$ (since for any $x \in f^{1}(y), y=f(x)$ and $V(f(x)) \neq 0$ so in view of (1) U(x) must be zero)

Therefore $\sup_{x \in f^{-1}(y)} U(x) = 0$

and hence $f(U)(f(x)) = \sup_{x \in f^{-1}(y)} U(x) = 0$

Thus inf $\{\sup_{x \in f^{-1}(y)} U(x), V(f(x))\}=0$

Therefore $(f(U) \cap V)(f(x))=0$

Further

(b)for any unmapped element y of Y, f(U)(y)=0(definition of f(U)). Therefore $\inf{f(U)(y), V(y)}=0$ Thus for all $v \in Y$, $\inf{f(U)(y), V(y)}=0$

Equivalently $(f(U) \cap V)(y) = 0 \quad \forall y \in Y$

Or $f(U) \cap V = \varphi$

Conversely, let $(x,y)_r \in XxY$ -G(f). Then $y \neq f(x)$ and hence \exists

Fuzzy supra open sets U,V in X such that $x_r \in U$, $y_r \in V$ and $f(U) \cap V = \phi$. Now consider UxV. We have

 $UxV(x,f(x)) = \inf \{ U(x),V(f(x)) \}$ $\leq \inf \{ \sup U(x),V(f(x)) \}$ $= (f(U) \cap V)(f(x))$ = 0

Thus we have,

 $(x,y)_r \in UxV \sqsubseteq XxY - G(f)$

Which shows that XxY-G(f) is fuzzy supra open and hence G(f) is fuzzy supra closed in XxY.

Lemma3.2:Let f be a function from an fsts (X,τ_1) to another fsts (X,τ_2) .Then the following statements are equivalent:

(1) f is S-continous.

(2) for each $x_r \in X$ and each τ_2 -fuzzy supra open set $V \sqsubseteq Y$ containing $(f(x))_r$ there exists a τ_1 -fuzzy supra open set $U \sqsubseteq X$ containing x_r such that $f(U) \sqsubseteq V$.

Proof:(1)⇒(2)

Since f is S-continuous, the inverse image of each τ_2 -fuzzy supra open set is τ_1 -fuzzy supra open. Thus for any $x_r \in X$ and any fuzzy open set V of Y containing $(f(x))_r$ there exists $U=f^1(V)\in \tau_1$ such that $f(U)=f(f^1(V)) \sqsubseteq V$.

(2) ⇒(1)

Let V be a τ_2 -fuzzy supra open set. Then we have to show that $f^1(V)$ is τ_1 -fuzzy supra open.Let $x_r \varepsilon f^1(V)$.

Then $r < (f^{-1}(V))(x)$ =V(f(x))

So $(f(x))_r \in V$

Therefore, using (2) $\exists U \in \tau_1$ such that $x_r \in U$ and $f(U) \equiv V$. Hence $x_r \in U \equiv f^1(f(U)) \equiv f^1(V)$ which shows that $f^1(V)$ is a fuzzy supra neighbourhood of each of its fuzzy points. Therefore $f^1(V) \in \tau_1$ (in view of proposition)

Now with the help of above two lemmas we prove the following theorems:

Theorem3.1:If $f : (X,\tau_1) \rightarrow (Y,\tau_2)$ is S-continuous and Y is ST₂-space then f has an S-closed graph.

Proof:Let $(x,y)_r \in XxY-G(f)$. Then $y \neq f(x)$. Now choose $r \in (0,1)$. Since Y is $ST_2 \exists two fuzzy$ supra open sets U and V such that $(f(x))_r \in U \ , y_r \in V$ and $U \cap V = \varphi$. Since f is S-continuous, using lemma 3.2 \exists a fuzzy supra open \notin neighbourhood W of x_r such that $f(W) \sqsubseteq U$. Hence $f(W) \cap V = \varphi$. This implies in view of lemma 3.1 that f has an fuzzy S-closed graph.

Theorem3.2:If $f:(X,\tau_1) \rightarrow (Y,\tau_2)$ is S-continuous injection with an S-closed graph, then X is ST₂

Proof: Let $x_1 , x_2 \in X$, $x_1 \neq x_2$ then $f(x_1) \neq f(x_2) \Rightarrow (x_1, f(x_2))_r \in XxY - G(f)$. Since f has an Sclosed graph, \exists two fuzzy supra open neighbourhoods U and V of $(x_1)_r$ and $(f(x_2))_r$ respectively such that $f(U) \cap V = \varphi$. Since f is Scontinuous, there exists a fuzzy supra open set W containing $(x_2)_r$ such that $f(W) \equiv V$. Hence $f(W) \cap f(U) = \varphi$ which implies that $W \cap U = \varphi$ and so X is an ST₂-space.

Theorem3.3:Let (X,τ) be a Hausdorff fsts and A be an α -supra compact subset of X.Then any fuzzy point x_r (x \notin A) and α_A can be separated by disjoint fuzzy supra open sets of X.

Proof: Let x_r be a fuzzy point and A be a disjoint α -supra compact subset of X.Take $y_{\alpha} \in A$, then x_r and y_{α} are two distinct fuzzy points in X and hence \exists two fuzzy supra open sets say $U_{\nu\alpha}$ and $V_{\nu\alpha}$ in X such that $x_r \in U_{v\alpha}$ and $y_{\alpha} \in V_{v\alpha}$ and $U_{v\alpha} \cap V_{v\alpha} = \Phi$. Now consider $\mathcal{U} = \{A \cap V_{ya}; y_a \in A\}$ Then \mathcal{U} forms an open α -shading of A, therefore, since A is α -compact \exists a finite α -subshading of Α say $\{A \cap V_{v\alpha 1}, A \cap V_{v\alpha 2}, \dots, A \cap V_{v\alpha n}\}.$ Now consider $\nu = \{V_{y\alpha 1}, V_{y\alpha 2}, \dots, V_{y\alpha n}\}.$ n n Take U= \cap U α i and V= \cap V $_{\alpha i}$ i=1 i=1Then $x_r \in U$, $\alpha_A \subseteq V$ and further $U \cap V = \Phi$, Since $U_{\alpha i} \cap V_{\alpha i} = \varphi$ $U_{\alpha n} \cap V_{\alpha n} = \varphi$ Therefore, $(\cap U_{\alpha i}) \cap V_{\alpha i} = \varphi$ for $i = 1, 2, \dots, n$ which implies $(\cap U_{\alpha i}) \cap (UV_{\alpha i})=\varphi$ i i Hence, the theorem is proved.

IV. CONCLUSION

Here we have obtained some results in fuzzy supra topological spaces especially related to graph and continuity.

REFERENCES

- Abd. El-Monsef M.F. and RamadanA.E. On fuzzy supra topological spaces, Indian J. Pure Appl. Math, 18(4) (1987) 322-329
- [2]. Chang C.L., Fuzzy topological spaces, J Math Anal and Appl.24(1968)182-190
- [3]. Dang S., Behera A., Nanda S.,Some results on fuzzy supra topological spaces,Fuzzy sets and systems, 62(1994) 333-339
- [4]. Kandil A.,Nouh A.A. and El-Sheikh S.A.,On fuzzy bitopological spaces,Fuzzy sets and systems,74(1995)353-363
- [5]. Lowen R., Fuzzy topological spaces and fuzzy compactness, J.Math.Anal.Appl.56(1976)6 21-633
- [6]. Mashhour A.S.,Allan A.A.,Mahmoud F.S.and Khedr F.H.,On Supra topological space,Indian J.Pure Appl.Math.14(4)(1983)502-510
- [7]. Ming Pu Pao and Ming L.Y.,Fuzzy topological spaces I.Neighbourhood structure of a fuzzy point and Moore Smith convergence,J.Math.Anal.Appl.76(1980)5 71-599
- [8]. Srivastava R.,Lal S.N. and Srivastava A.K.,Fuzzy Hausdorff topological spaces,J.Math.Anal.Appl.81(1981)497-506
- [9]. Srivastava M.,Sinha P.,Supra topological space and Hausdoffness,Int.J.Math.Archive 6(8)(2015)1-5
- [10]. 10.Zadeh L.A.,Fuzzy sets,Inf.Contr.8(1965)338-353